Материалы 47 (XLVII) тектонического совещания. TOM II. 2015

РОССИЙСКАЯ АКАДЕМИЯ НАУК НАУЧНЫЙ СОВЕТ ПО ПРОБЛЕМАМ ТЕКТОНИКИ И ГЕОДИНАМИКИ ПРИ ОТДЕЛЕНИИ НАУК О ЗЕМЛЕ ГЕОЛОГИЧЕСКИЙ ИНСТИТУТ РАН ГЕОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ МГУ

МАТЕРИАЛЫ СОВЕЩАНИЯ Том II МОСКВА 2015 ТЕКТОНИКА И ГЕОДИНАМИКА КОНТИНЕНТАЛЬНОЙ И ОКЕАНИЧЕСКОЙ ЛИТОСФЕРЫ: ОБЩИЕ И РЕГИОНАЛЬНЫЕ АСПЕКТЫ

5. Сим Л.А. Влияние глобального тектогенеза на новейшее напряженное состояние платформ Европы // М.В. Гзовский и развитие тектонофизики. М.: Наука, 2000. С. 326-350.

6. Сим Л.А., Брянцева Г.В., Чекмарев К.В. О перестройке структурного плана севера Западно-Сибирской плиты и Полярного Урала в новейший этап // Проблемы тектонофизики. К 40-летию создания М.В. Гзовским лаборатории тектонофизики. М.: ИФЗ, 2008. С. 301-318.

7. Филиппович Ю.В. О приоритетной роли горизонтальных тектонических дислокаций в формировании и развитии мезозойско-кайнозойской Западно-Сибирской геосинеклизы // Пути реализации нефтегазового потенциала ХМАО. IV научно-практ. конф. Ханты-Мансийск, 2001. С. 114-129.

8. Фурсов А.Я., Постников А.В., Ляпунов Ю.В., Сим Л.А., Скворцов М.Б., Быков В.В. Геологические основы и новые технологии прогнозирования залежей и оценки запасов нефти в отложениях баженовской свиты // Пути реализации нефтегаз. потенциала Ханты-Манс. авт. обл.». Ханты-Мансийск, 2000. С. 162-173.

9. Юрченко О.С., Сим Л.А. Сдвиговые деформации северной части Александровского свода Проблемы тектонофизики. К 40-летию создания М.В. Гзовским лаборатории тектонофизики. М.: ИФЗ, 2008. С. 431-461.

В.В. Славинский¹

Нагрев океанической литосферы мантийными плюмами

Нагрев океанической литосферы мантийным плюмом зависит от скорости её движения относительно положения плюма под основанием литосферы (горячей точки) и избыточной (по сравнению с окружающей мантией) температуры плюма ($T^{ex} \approx 150-300^{\circ}$ С). Скорость движения литосферной плиты особенно значима из-за медленного (кондуктивного) переноса тепла в литосфере. При движении Тихоокеанской плиты со скоростью ~9.2 см/год относительно Гавайской горячей точки тепловая аномалия Гавайского плюма ($T^{ex} \approx 300^{\circ}$ С) не достигла глубины извержения четвертичных постэрозионных щёлочно-базальтоидных магм с ксенолитами мантийных пород на о. Оаху. С глубины извержения начинаются интенсивная дегазация, быстрый подъём магм, захват и вынос ксе-

¹ Геологический институт (ГИН) РАН, Москва, Россия

нолитов, не нагретых (согласно минеральной термометрии) этими магмами, к земной поверхности. Глубина извержения связана с толщиной литосферы уравнением, полученным по данным минеральной термобарометрии ксенолитов и сейсмики для внутриплитных (плюмовых) щёлочно-базальтовых и кимберлитовых магм

$$\ln(H_{\rm L} - H_{\rm E}) = 1.62 + 0.0168H_{\rm E}, \qquad (1)$$

где $H_{\rm L}$ – толщина литосферы, $H_{\rm E}$ – глубина извержения магм в км. Далее $H_{\rm L} = H_{\rm L(Pac)}$, $H_{\rm L(Afr)}$ для океанической литосферы Тихоокеанской и Африканской плит, T – температура в °С, P – давление в ГПа, t – возраст нормальной океанической коры в млн лет.

Глубина извержения магм определяется по наименее глубоким нагретым ими ксенолитам, называемым высокотемпературными. При отсутствии таковых – по самым глубоким не нагретым магмами (низкотемпературным) ксенолитам. Глубина извержения ($H_{\rm E} = 73$ км) постэрозионных магм на о. Оаху приравнена к глубине их низкотемпературного ксенолита шпинелевого лерцолита 77PA-39 [1] (параметры его равновесия $T = 885^{\circ}$ С, P = 2.34 ГПа). По уравнению (1) ей соответствует толщина литосферы $H_{\rm L(Pac)} = 90$ км (t = 80 млн лет) при её сейсмической оценке 88 ± 7 км [2].

Глубина извержения ($H_{\rm E} = 83$ км, считая от кровли литосферы) альнёйтовых магм 34 млн лет назад на юго-восточной окраине подводного тихоокеанского плато Онтонг-Джава найдена по глубине их двух высокотемпературных ксенолитов – гранат-шпинелевого лерцолита PHN 3539 [3] ($T = 1117^{\circ}$ С, P = 2.64 ГПа) и шпинелевого лерцолита PHN 3549В [3] ($T = 1097^{\circ}$ С, P = 2.64 ГПа). Этой глубине извержения отвечают толщина литосферы $H_{\rm L(Pac)} = 103$ км по уравнению (1) и возраст коры t = 110 млн лет по зависимости толщины Тихоокеанской плиты от возраста её коры

$$H_{\rm L(Pac)} = 12 + 8.7t^{1/2},\tag{2}$$

полученной на основании $H_{L(Pac)} = 90$ км (t = 80 млн лет) и сейсмических данных [4]. В результате юго-восточная окраина плато Онтонг-Джава образовалась ~122 млн лет назад на нормальной океанической коре возраста ~22 млн лет (= 110 +34 - 122), т.е. во внутриплитной обстановке.

Отсутствие нагрева плюмами Тихоокеанской плиты на глубинах, с которых были вынесены ксенолиты, позволило по термобарометрии ксенолитов с о-вов Оаху, Таити (о-ва Общества), Савайи (о-ва Самоа) и плато Онтонг-Джава рассчитать геотермы её ненагретой мантии в интервале возрастов коры 70 (о. Таити) – 110 (плато Онтонг-Джава) млн лет

$$T = 1185 - 60.7t^{1/2} + 1255t^{-1/2}P.$$
 (3)

Скорость движения Африканской плиты относительно горячих точек Зелёного Мыса, Канарской и Мадейра всего ~1.2 см/год, и потому одноимённые плюмы успели кондуктивно нагреть всю океаническую литосферу к началу извержений ксенолитсодержащих постэрозионных магм. Щёлочно-базальтоидные магмы на о. Сал (о-ва Зелёного Мыса) извергались с глубины $H_E = 108$ км согласно глубине их низкотемпературного ксенолита лерцолита CV9 [5] (T = 1253°C, P = 3.48 ГПа). Тогда по уравнению (1) литосфера о. Сал ~10 млн лет назад, во время извержения ксенолитсодержащих магм, достигала толщины $H_{L(Afr)} = 139$ км.

Если плюм Зелёного Мыса нагревает, но не утоняет литосферу, то с учётом толщины литосферы Срединно-Атлантического хребта [4] и $H_{L(Afr)} = 139$ км (t = 130 млн лет) толщину океанической литосферы Африканской плиты $H_{L(Afr)}$ можно связать с возрастом её коры уравнением

$$H_{\rm L(Afr)} = 30 + 9.6t^{1/2} \,. \tag{4}$$

Океанической литосфере Африканской и Тихоокеанской плит одной толщины соответствуют одни и те же значения теплового потока из астеносферы через основание литосферы, называемого астеносферным тепловым потоком (q_A), и температуры основания литосферы (T_L): $q_{A(Aff)} = q_{A(Pac)}$ и $T_{L(Afr)} = T_{L(Pac)}$ при $H_{L(Afr)} = H_{L(Pac)}$. Тогда по уравнениям (2), (3) при коэффициенте теплопроводности океанической литосферной мантии 3.5 Вт/(м·К) и (4) для нагретой и не нагретой плюмом Зелёного Мыса литосферы о. Сал ~10 млн лет назад $q_{A(Afr)} = 16.0$ и 9.8 мВт/м², $T_{L(Afr)} = 1270$ и 680°С соответственно с аномалиями астеносферного теплового потока $\Delta q_{A(Afr)} = 6.2$ мВт/м² и температуры $\Delta T_{L(Afr)} = 590$ °С. Рассчитанная аномалия $\Delta q_{A(Afr)}$ близка к измеренной современной аномалии поверхностного теплового потока $\Delta q_S \leq ~9$ мВт/м² [6] на о-вах Зелёного Мыса.

Аналогично для нагретой и не нагретой Канарским плюмом литосферы о. Иерро (t = 156 млн лет) в четвертичное время вычислено $q_{A(Afr)}$ = 14.3 и 9.0 мВт/м², $T_{L(Afr)} = 1185$ и 605°С соответственно, аномалии $\Delta q_{A(Afr)} = 5.3$ мВт/м² и $\Delta T_{L(Afr)} = 580$ °С. Литосфера о. Мадейра (t = 135млн лет) тогда же нагрета плюмом Мадейра слабее, чем литосфера о. Иерро Канарским плюмом: $q_{A(Afr)} = 13.4$ и 9.6 мВт/м², $T_{L(Afr)} = 1065$ и 665°С при нагреве и отсутствии нагрева соответственно, аномалии $\Delta q_{A(Afr)} = 3.8$ мВт/м² и $\Delta T_{L(Afr)} = 400$ °С.

По уравнениям (2), (3) и (4) геотермы не нагретой плюмами океанической мантии Африканской плиты можно представить в виде, подобном уравнению (3),

$$T = 1059 - 67.0t^{1/2} + 981t^{-1/2}P.$$
 (5)

Таким же образом определяются геотермы ненагретой океанической мантии любой другой литосферной плиты, если для неё известна зависимость $H_{\rm L}(t)$.

Несмотря на близкий по величине нагрев литосферы, Канарское поднятие значительно ниже (0.5–1 км) поднятия Зелёного Мыса (до 2.2 км). Следовательно, даже на медленно движущихся плитах внутриплитные поднятия возникли в основном не из-за нагрева литосферы, а благодаря динамической поддержке её поднимающимися плюмами [7, 8]. Действительно, поднятие Зелёного Мыса – самое высокое внутриплитное океаническое поднятие на Земле – находится над общирной горячей верхне- и нижнемантийной аномалией [9, 10], утоняющей на ~30 км ($T^{ex} \approx 300^{\circ}$ С) [11] переходную зону верхней мантии, ограниченную сейсмическими разделами 410 и 660 км.

Низкие значения теплового потока через основание древней океанической литосферы указывают на сильное охлаждение не только этой литосферы за счёт циркуляции морской воды в коре всех возрастов, но и астеносферного потока, перемещающего литосферу [12]. Астеносферный поток обгоняет океаническую литосферу на пути от срединноокеанического хребта к континенту и, будучи достаточно холодным, а потому плотным, погружается вместе с ней или без неё под литосферу активной или пассивной континентальной окраины.

Литература

1. Sen G. Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau shield, Oahu, Hawaii: implications for petrology of the post-eruptive lithosphere beneath Oahu // Contrib. Mineral. Petrol. 1988. V. 100, \mathbb{N} 1. P.61-91.

2. *Priestley K., Tilmann F.* Shear-wave structure of the lithosphere above the Hawaiian hot spot from two-station Rayleigh wave phase velocity measurements // Geophys. Res. Lett. 1999. V. 26, № 10. P. 1493-1496.

3. *Nixon P.H., Boyd F.R.* Garnet bearing lherzolites and discrete nodule suites from the Malaita alnöite, Solomon Islands, S.W. Pacific, and their bearing on oceanic mantle composition and geotherm / Boyd F.R., Meyer H.O.A. (eds.) The mantle sample: inclusions in kimberlites and other volcanics. // Proc. 2nd Int. Kimb. Conf. Washington, D.C.: AGU, 1979. V. 2. P. 400-423.

4. *Zhang Y.-S., Lay T.* Evolution of oceanic upper mantle structure // Phys. Earth Planet. Int. 1999. V. 114, № 1-2. P. 1-80.

5. Bonadiman C., Beccaluva L., Coltorti M., Siena F. Kimberlite-like metasomatism and 'garnet signature' in spinel-peridotite xenoliths from Sal, Cape Verde Archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere? // J. Petrol. 2005. V. 46, № 12. P. 2465-2493. 6. *Stein C.A., Von Herzen R.P.* Potential effects of hydrothermal circulation and magmatism on heatflow at hotspot swells / Foulger G.R., Jurdy D.M. (eds.) Plates, plumes, and planetary processes. // Geol. Soc. Amer. Spec. Pap. 2007. V. 430. P. 261-274.

7. Wilson D.J., Peirce C., Watts A.B., Grevemeyer I., Krabbenhoeft A. Uplift at lithospheric swells – I: seismic and gravity constraints on the crust and uppermost mantle structure of the Cape Verde mid-plate swell // Geophys. J. Int. 2010. V. 182, N 2. P. 531-550.

8. Wilson D.J., Peirce C., Watts A.B., Grevemeyer I. Uplift at lithospheric swells – II: is the Cape Verde mid-plate swell supported by a lithosphere of varying mechanical strength? // Geophys. J. Int. 2013. V. 193, № 2. P. 798-819.

9. Davaille A., Stutzmann E., Silveira G., Besse J., Courtillot V. Convective patterns under the Indo-Atlantic «box» // Earth Planet. Sci. Lett. 2005. V. 239, № 3-4. P. 233-252.

10. Forte A.M., Quéré S., Moucha R., Simmons N.A., Grand S.P., Mitrovica J.X., Rowley D.B. Joint seismic–geodynamic-mineral physical modelling of African geodynamics: a reconciliation of deep-mantle convection with surface geophysical constraints // Earth Planet. Sci. Lett. 2010. V. 295, № 3-4. P. 329-341.

11. Vinnik L., Silveira G., Kiselev S., Farra V., Weber M., Stutzmann E. Cape Verde hotspot from the upper crust to the top of the lower mantle // Earth Planet. Sci. Lett. 2012. V. 319-320. P. 259-268.

12. *Bird P., Liu Z., Rucker W.K.* Stresses that drive the plates from below: definitions, computational path, model optimization, and error analysis // J. Geophys. Res. 2008. V. 113, № B11, B11406. P. 1-32.