© Хуторской М.Д., Тевелева Е.А.

О ГЕОТЕРМИЧЕСКОЙ АСИММЕТРИИ ЮГО-ЗАПАДНОГО ИНДИЙСКОГО ХРЕБТА

Хуторской М.Д., Тевелева Е.А. Геологический институт РАН, 119017, Москва, Россия e-mail: mkhutorskoy@ginras.ru

Проведен статистический анализ распределения теплового потока вдоль трех геотраверсов, пересекающих Юго-Западный Индийский хребет. В результате применения статистического сравнения выборок по критерию Крамера-Вэлча установлено, что в геотермическом режиме этого участка срединного хребта существует статистически значимая асимметрия теплового потока. Западный склон хребта и смежные абиссальные котловины обладают более высоким тепловым потоком по сравнению с теми же структурными элементами восточнее оси хребта. Отмечено также существование асимметрии в структуре коры и в магнитном поле. Предлагается модель для объяснения выявленного феномена, учитывающая влияние силы Кориолиса, действующей на восходящий поток магмы в дивергентной зоне хребта.

Ключевые слова: тепловой поток, асимметрия, Индийский океан, геотраверс, срединный хребет, статистика, сила Кориолиса.

GEOTHERMAL ASYMMETRY OF THE SOUTHWEST INDIAN RIDGE

Khutorskoy M.D., Teveleva E.A.

Geological Institute of the Russian Academy of Sciences, 119017, Moscow, Russia

The paper presents a statistical analysis of heat flow distribution along three sections crossing the South-West Indian Ridge. The statistical comparison of the samples using the Cramer - Welch criterion revealed a statistically significant heat flow asymmetry in this section of the Mid Ridge. The Ridge western slope and the adjacent abyssal basins have a higher heat flow than the same structural elements east of the Ridge axis. The asymmetry is also found in the crust structure and in magnetic field. For phenomenon explaining, a model is proposed accounting the Coriolis force affect on the upward magma flux in the Ridge divergent zone.

Keywords: heat flow, asymmetry, Indian ocean, section, Mid ridge, statistic, Coriolis force.

Факт геотермической асимметрии склонов срединных океанических хребтов (COX), смежных абиссальных котловин и пассивных частей трансформных разломов в Атлантическом и Тихом океанах был обоснован и подтвержден на основании статистической обработки выборок измерений из глобальной базы данных по тепловому потоку вдоль геотраверсов, пересекающих COX и охватывающих перечисленные структурные элементы океанической коры [5,6,8,9,10]. Важно отметить, что асимметрия COX наблюдается не только в тепловом поле, но и в других геофизических полях: магнитном [1] и гравитационном [14], а также в структуре коры [3,7].

Природа этого феномена многократно обсуждалась, и предлагались различные геолого-геофизические модели для объяснения существующей асимметрии. Некоторые исследователи отмечают существование различной скорости спрединга океанических плит по разные стороны от оси хребтов [16,21], другие полагают, что различаются геодинамические процессы в смежных плитах, и на одной из них режим сжатия, сменивший первичную обстановку растяжения, создает характерные для сжатия шарьяжно-надвиговые структуры [6,7]. Нельзя игнорировать и кориолисову силу в неинерциальной системе вращающейся Земли, из-за которой поднимающийся поток фракционно расплавленного мантийного вешества отклоняется относительно материальной точки на поверхности планеты к западу. Этим можно объяснить относительное повышение

фланге Срединно-Атлантического хребта и Восточно-Тихоокеанского поднятия [8-10]. В настоящей работе мы впервые проанализи-

средних величин теплового потока на западном

в настоящей работе мы впервые проанализировали распределение теплового потока на флангах Юго-Западного Индийского хребта (ЮЗИХ) (рис. 1).

Рис. 1. Морфологическая схема Юго-Западного Индийского хребта. Стрелками показаны: 1 – Западно-Индийский хребет; 2 – Африкано-Антарктический хребет; 3 – трансформный разлом Принца Эдуарда

Он морфологически разделяется на Западно-Индийский и Африкано-Антарктический хребты, сочленение которых происходит в зоне трансформного разлома Принца Эдуарда на 37° в.д. Хребты характеризуются интенсивно расчлененным рельефом с перепадом высот до 4 км. Они пересекаются многочисленными трансформными разломами, смещающими современную ось спрединга иногда на десятки миль [11].

ЮЗИХ относится к медленно спрединговым хребтам [18]. Скорость спрединга здесь, в среднем, не превышает 14 км/млн лет (1.4 см/год (для сравнения, на Срединно-Атлантическом хребте средняя скорость спрединга составляет 2.5 см/год)), причем аккреция коры по разные стороны от оси хребта резко асимметрична. Так, на «антарктической» стороне она составляет 8.5 км/млн лет, а на «африканской» -5.5 км/млн лет [15]. Вдоль простирания ЮЗИХ также наблюдается структурная асимметрия. Участки хребта, лежащие западнее трансформного разлома Эндрю-Бэйн (30° в.д.) и восточнее трансформного разлома Мэлвилл (61° в.д.), характеризуются аномально глубокой осевой долиной, косым спредингом, небольшой величиной центральной магнитной аномалии и нестабильным морфологическим проявлением на дне пассивных частей трансформных разломов [15,21]. Такие свойства периферийных частей ЮЗИХ позволяют предположить, что они имеют относительно «холодную» мантию, прочную и толстую литосферу и ограниченные запасы магмы. Напротив, центральная часть ЮЗИХ, между 30 и 61° в.д., характеризуется прекрасно проявляющимися в рельефе трансформными разломами, ортогональным спредингом и ярко выраженной центральной магнитной аномалией [21]. Внутри этой части ЮЗИХ, между трансформными разломами Атлантис II (56°45' в.д.) и Навара (58°40' в.д.), лежит сегмент, который, судя по скорости спрединга, можно сравнить с большинством сегментов Срединно-Атлантического хребта.

Таким образом, ЮЗИХ характеризуется структурной и морфологической асимметрией вдоль и вкрест своего простирания.

В юго-западной части океана, начиная с конца 60-х годов XX века, неоднократно проводились экспедиционные работы на американских, французских и японских научно-исследовательских судах, включавшие измерения теплового потока [12,13,16,19]. Компиляция измеренных значений теплового потока отражена в глобальных базах данных [4,17,20,22]. На рис. 2 показаны все известные на сегодняшний день пункты измерений в этой части Индийского океана.

Для установления факта геотермической асимметрии на флангах Западно-Индийского хребта нами было проведено сравнение выборок данных теплового потока вдоль трех длинных профилей (геотраверсов), пересекающих хребет (см. рис. 2). Статистические выборки для каждого из этих геотраверсов вполне представительны (табл. 1-3) для проведения сравнительного анализа.

Доказательство возможной геотермической асимметрии трансформных разломов основано на статистическом сравнении выборок эмпирических

Рис. 2. Батиметрическая карта юго-западной части Индийского океана (сечение изобат – 1000 м) и расположение точек измерения теплового потока (треугольники). Размер треугольников пропорционален величине теплового потока. 1–3 – геотраверсы, вдоль которых проведена статистическая обработка геотермических данных

Таблица 1

		36.1
Измерения теплово	го потока вдол	ь геотраверса №1

	Запалная часть уребта					Восточная часть упебта					
									ТП мВт/		
Nº	Долгота,°	Широта,°	Глубина, м	M ²	N⁰	Долгота,°	Широта,°	Глубина, м	M ²		
1	71.15	-17.82	-1730	28	1	74.13	-26.37	-4050	49		
2	70.50	-17.94	-1680	25	2	73.32	-27.05	-4050	63		
3	70.80	-18.32	-1677	76	3	74.38	-26.65	-4000	40		
4	70.87	-16.37	-1590	249	4	75.87	-26.12	-3900	67		
5	70.93	-16.93	-1472	81	5	73.10	-24.70	-4100	85		
6	68.22	-15.27	-1374	157	6	72.25	-24.85	-4100	80		
7	68.78	-20.77	-1326	98	7	71.23	-21.35	-3900	206		
8	67.52	-15.10	-860	75	8	73.13	-19.00	-3950	147		
9	67.68	-18.33	-840	34	9	76.65	-24.45	-4000	30		
10	67.75	-18.50	-680	17	10	79.57	-24.37	-4100	3		
11	67.30	-15.02	-580	70	11	73.07	-23.67	-3950	18		
12	66.44	-15.94	-850	61							
13	65.83	-20.31	-3250	63							
14	65.14	-13.66	-2300	67							
15	64.78	-14.01	-3450	76							
16	65.25	-14.00	-3450	78							
17	66.17	-17.84	-2750	60							
18	65.51	-13.79	-2350	67							
19	66.14	-18.90	-3500	68							
20	65.76	-14.88	-3400	70							
21	65.40	-20.95	-3200	76							
22	65.06	-14.03	-3400	77							
23	64.31	-15.23	-3450	78							
24	65.39	-20.94	-3800	89							
25	65.68	-18.10	-3000	56							
26	64.83	-13.84	-2300	63							
27	65.05	-14.88	-2300	67							
28	65.55	-20.39	-3850	72							
29	66.15	-15.43	-3500	72							
30	65.74	-14.88	-3400	76							
31	63.82	-18.04	-3550	57							
32	64.43	-14.55	-3450	72							
33	65.03	-14.24	-3400	109							
34	66.54	-18.01	-2200	73							
35	71.15	-17.82	-1730	28							
36	70.50	-17.94	-1680	25							

Таблица 2

Измерения теплового потока вдоль геотраверса №2

Западная часть хребта					Восточная часть хребта				
N₂	Долгота,°	Широта,°	Глубина, м	ТП, мВт/ м ²	N⁰	Долгота,°	Широта,°	Глубина, м	ТП, мВт/ м ²
1	58.94	-32.37	-1990	25	1	72.62	-33.33	1188	38
2	58.64	-31.93	-1706	39	2	71.78	-37.73	1319	58
3	57.44	-29.43	-2500	29	3	70.62	-42.15	1420	70
4	60.67	-26.73	-1703	69	4	79.57	-38.43	2032	21
5	61.43	-24.08	-1659	176	5	61.87	-29.88	72	29
6	61.43	-24.08		53	6	61.93	-31.42	150	18
7	62.06	-25.25	-1418	73	7	62.42	-32.92	264	29
8	61.72	-24.54	-1557	162	8	73.62	-35.78	1390	16
9	61.82	-24.78	-1438	59	9	76.37	-36.87	1681	85
10	61.85	-24.82	-1468	28	10	62.95	-31.23	233	10
11	61.92	-24.98	-1498	92	11	61.72	-33.27	218	74
12	61.94	-25.02	-1495	94	12	72.77	-40.78	1546	17

Таблица 2 (Продолжение)

13	61.75	-24.60	-1379	82	13	75.13	-40.97	1761	23
14	61.60	-24.28	-1660	19	14	76.53	-40.32	1854	89
15	61.59	-24.23	-1615	49	15	75.98	-36.08	1611	73
16	51.30	-29.58	-3260	80	16	76.58	-37.35	1722	39
17	51.30	-29.58	-3260	80	17	62.97	-31.23	234	8
18	53.88	-24.08	-3350	81	18	63.58	-30.32	246	24
19	56.04	-23.23		56	19	62.58	-28.33	63	136
20	56.09	-23.34		62	20	59.22	-34.35	45	64
21	56.29	-23.53		57	21	63.07	-30.95	230	31
22	55.98	-29.75	-2863	16	22	67.58	-34.92	817	49
23	55.99	-29.88	-2892	21	23	69.55	-36.48	1064	47
24	56.08	-29.84	-2821	37	24	59.22	-34.35	45	64
25	56.05	-29.62	-2744	38	25	72.67	-29.57	1018	84
26	56.07	-29.42	-2746	38	26	69.22	-30.43	753	67
27	56.02	-29.61	-2798	24	27	66.05	-31.03	500	51
28	59.76	-23.20	-2244	24	28	67.38	-29.52	547	19
29	59.01	-24.33	-2533	50					
30	57.49	-26.77	-2708	63					
31	56.65	-28.49	-2691	62					
32	56.04	-29.00	-2732	60					
33	55.89	-29.59	-2876	14					
34	56.00	-29.61	-2831	14					
35	56.09	-29.61	-2725	11					
36	55.99	-29.13	-2721	18					
37	55.98	-29.43	-2823	18					
38	55.97	-29.50	-2848	301					
39	56.14	-23.29	-2301	54					
40	55.26	-22.09	-2907	52					
41	60.16	-29.85	-1481	92					
42	60.21	-30.08	-1561	105					
43	61.58	-27.80	-1481	71					
44	59.62	-28.53	-1680	46					
45	59.73	-28.75	-1332	209					
46	59.79	-28.97	-1550	234					
47	62.78	-25.90	-1370	205					
48	63.07	-26.55	-1330	165					
49	60.08	-29.11	-1141	119					
50	61.41	-26.02	-1426	160					
51	61.87	-26.37	-875	161					
52	62.58	-26.94	-1415	65					
53	61.72	-28.74	-1609	74					
54	62.00	-28.23	-1648	62					
55	62.18	-27.93	-1511	62					
56	61.48	-27.88	-708	17					
57	61.64	-27.58	-1251	44					
58	61.89	-27.75	-1348	65					
59	61.60	-28.21	-1558	69					
60	62.22	-27.21	-1439	68					
61	60.15	-29.46	-1097	82					
62	60.38	-29.15	-1134	72					
63	60.53	-28 90	-1088	46					
64	59.83	-29.28	-1287	167					
65	61 55	-25.13	-1441	107					

Таблица 3

Измерения тепло	ового потока	влопь геот	раверса №3
тэмерения тепл		вдоль гоот	

Запалная часть хребта Востони Бдоль гоографоров на									
	Эападн	ая часть хро	ликина Глубина	тп		Bot	почная част	5 хрсота Глубино	тп
N⁰	Долгота,°	Широта,°	тлубина, М	MBT/M^2	N⁰	Долгота,°	Широта,°	тлубина, М	MBT/M^2
1	34.93	-34.32	-3349	198	1	44.4	-39.1	-4145	334
2	34.98	-34.15	-3155	195	2	44.7	-44.2	-4725	389
3	35.03	-35.60	-2067	221	3	46	-45.1	-2803	139
4	35.07	-34.43	-2407	170	4	48	-46.2	-1093	44
5	35.15	-34.53	-2067	263	5	49.6	-45	-3372	123
6	35.18	-34.48	-1933	79.3	6	50	-45.9	-3182	42
7	37.30	-35.20	-3198	75.3	7	51.4	-44.6	-4120	108
8	29.93	-38.98		66	8	52.1	-45.5	-4230	151
9	31.42	-34.40		63	9	52.8	-39.9	-4254	58
10	29.95	-35.50		55	10	52.8	-40	-4258	84
11	27.75	-35.92		70	11	53.6	-44.3	-3686	77
12	29.18	-33.22		38	12	54.2	-46	-3667	118
					13	55	-43.9	-3392	106
					14	60.3	-51.1		49
					15	54.5	-49.1		54
					16	54.5	-49.1		55
					17	54.4	-49.1		55
					18	53.7	-48		57
					19	54.5	-49		57
					20	53.7	-48		58
					21	54.5	-49		58
					22	54.5	-49		58
					23	54.4	-49.1		58
					24	53.7	-47.9		59
					25	53.7	-48		59
					26	62.6	-53		60
					27	53.7	-48		60
					28	54.4	-49.1		60
					29	53.7	-48		61
					30	54.5	-49.1		61
					31	53.7	-48		62
					32	53.7	-48		62
					33	54.5	-49		62
					34	54.4	-49.1		62
					35	53.7	-48		64
					36	61	-46.5		65
					37	53.7	-48		65
					38	52.7	-47.3		71
					39	52.7	-47.3		71
					40	53.7	-48		71
					41	52.7	-47.3		72
					42	52.7	-47.3		73
					43	42.4	-42.9		75
					44	52.8	-47.3		75
					45	52.8	-47.3		79
					46	61.2	-50.3		81
					47	52.7	-47.3		85
					48	52.3	-47.3		96
					49	46.2	-43.8		98
					50	59.6	-50.5		271

данных, относящихся к разным его частям, в нашем случае, к его западному и восточному простиранию.

средних значений теплового потока в исследуемых выборках использовался критерий Крамера-Вэлча (Т), значение которого находят по формуле:

Для оценки статистически значимого различия

$$T = \frac{\sqrt{mn} \cdot (\bar{x} - \bar{y})}{\sqrt{ns_x^2 + ms_y^2}},$$

где \bar{x} , s_x^2 , n и \bar{y} , s_y^2 и m, соответственно, выборочные средние, дисперсии и количество данных по двум сравниваемым выборкам. Если $T < \varphi(1-\alpha/2)$, где $\varphi(1-\alpha/2)$ – значение обратной функции нормального распределения от уровня значимости α , где $\alpha=1-P$, P – доверительная вероятность, то принимают гипотезу об однородности средних значений теплового потока, т.е. существование асимметрии не подтверждается. Если же $T \ge \varphi(1-\alpha/2)$, то принимают гипотезу о том, что средние значения по рассматриваемому признаку неоднородны и асимметрия под-

тверждается [2]. В данном случае уровень значимости α =0,1. При этом доверительная вероятность результата различия средних значений теплового потока западной и восточной частей для геотраверса №2 составляет 99%, а для геотраверса №3 – 90%.

Результаты статистической обработки выборок геотермических данных по каждому геотраверсу представлены на рис. 3. Как видно из этого рисунка, средние значения теплового потока западнее и восточнее оси ЮЗИХ по каждому геотраверсу формально различаются, однако сравнение данных с учетом доверительного интервала показывает, что статистически значимым можно считать различия только на геотраверсах №2 и №3.

Рис. 3. Диаграмма сравнения средних значений теплового потока западнее и восточнее оси ЮЗИХ вдоль геотраверсов

Таким образом, в юго-западной части Индийского океана мы констатируем наличие не только структурной, но и геотермической асимметрии ЮЗИХ. Не игнорируя все обсуждавшиеся выше возможные причины феномена асимметрии, приведем еще одно, на наш взгляд, физически обоснованное объяснение.

На любую материальную точку Земли из-за ее вращения против часовой стрелки будет действовать сила Кориолиса, которая в южном полушарии будет смещать массу влево относительно радиуса. В дивергентных зонах такой массой является магма, поднимающаяся из астеносферного мантийного резервуара, обеспечивая спрединг океанских плит. Под действием силы Кориолиса траектория подъема магмы становится не ортогональной к поверхности дна, а смещенной к западу. Сила Кориолиса, как известно, достигает максимума на полюсах и уменьшается до нуля на экваторе. Амплитуда смещения магматического потока будет больше в высоких широтах, чем при приближении к экватору. Геотраверсы №№ 1-3 расположены в южном полушарии, поэтому поток поднимающейся магмы неизменно отклоняется к западу, что объясняет наблюдаемую асимметрию в Индийском океане. Напомним, что подобную асимметрию теплового потока мы отмечали на Анголо-Бразильском геотраверсе [5], который также расположен в южном полушарии.

Работа выполнена при финансовой поддержке госбюджетной темы №0135-2015-0021 и Программы Президиума РАН №49.0.

Список литературы

- Глебовский В.Ю., Каминский В.Д., Осипов В.А. Структура аномального магнитного поля от срединного хребта до Ангольского шельфа // Литосфера Ангольской котловины и восточного склона Южно-Атлантического хребта. Л., 1986. С. 70-80.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа. 2005. С. 327-349.
- Нарышкин Г.Д., Погребицкий Ю.Е. Морфоструктура дна Юго-Восточной Атлантики // Литосфера Ангольской котловины и восточного склона Южно-Атлантического хребта. Л., 1986. С. 10-23.
- Подгорных Л.В., Хуторской М.Д. Планетарный тепловой поток (Карта масштаба 1:30 000 000 и объяснительная записка к ней) // Москва-Санкт Петербург. Оргсервис ЛТД. 1997. 65 с.

- 5. Подгорных Л.В., Хуторской М.Д. Асимметрия распределения теплового потока вдоль Анголо-Бразильского геотраверса (Южная Атлантика) // Докл. РАН. Т. 355. № 4. 1998. С. 212-215.
- Подгорных Л.В., Хуторской М.Д. Геотермическая асимметрия срединных хребтов Мирового океана // Геотектоника. 1999. № 3. С. 21-42.
- Пущаровский Ю.М., Пейве А.А., Разницин Ю.Н., Базилевская Е.С. Разломные зоны Центральной Атлантики. М.: ГЕОС. 1995. 163 с. (Тр. ГИН РАН, вып. 495).
- 8. Хуторской М.Д., Тевелева Е.А. Тепловой поток в абиссальных котловинах Пацифики и Атлантики // Мониторинг. Наука и технологии. №4. 2016. С. 20-27.
- 9. Хуторской М.Д., Поляк Б.Г. Тепловой поток в трансформных разломах Северной Атлантики и Юго-Восточной Пацифики // Геотектоника. №2. 2017. С. 55-66.
- 10. Хуторской М.Д., Тевелева Е.А., Подгорных Л.В. Геотермическая асимметрия трансформных разломов экваториальной части Атлантического океана // Доклады академии наук. Т. 475. №3. 2017. С. 325-328.
- 11. Шрейдер А.А. Геомагнитные исследования Индийского океана. М.: Наука. 2001. 320 с.
- 12. Anderson R.N., Langseth M.G., Sclater J.G. The mechanisms of heat transfer through the floor on the Indian Ocean. J. Geophys. Res. V. 82. 1977. Pp. 3391-3409.
- Anderson R.N., Langseth M.G., Hobart M.A. Geothermal convection through oceanic crust and sediments in the Indian Ocean. Science. 204. 828832. 1979.
- Budanov V.G., Ermakov B.V., Podgornykh L.V. Geophysical asymmetry of the wings of mid-Atlantic ridge (MAR): gravity, magnetic fields, heat flow. European Geophysical Society, Annales Geophysical, part I, Society Symposia, Solid Earth Geophysics & Natural Hazards, Supplement I to Volume 15, SE27 Tectonic evolution and thermal structure at mid-ocean ridges. 1997. P. 161.
- Cannat M., Rommevaux-Jestin C., Sauter D., Deplus C., Mendel. V. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J. Geophys. Res. V. 104. 1999. Pp. 22825-22843.
- Courtney R.C., Recq M. Anomalous heat flow near the Crozet Plateau and mantle convection. Earth Planet. Sci. Lett. V. 79. 1986. Pp. 373-384.
- 17. Hasterok D. Thermal Regime of the Continental and Oceanic Lithosphere. Ph.D. Dissertation. University of Utah. 2010. 156 p.
- Hosford A. Crustal accretion and Evolution at slow and ultra-slow spreading mid-ocean ridges. Doct. Dissertation. Mass. Inst. Technology, Cambridge, Mass., 02139 & Woods hole ocean. Inst., Woods hole, Mass. 02543. 2001. 254 p.
- Hyndman R.D., Langseth M.G., Von Herzen R.P. Deep Sea Drilling project geothermal measurements: a review. Rev. Geophys. 2.5. 1987. Pp. 1563-1582.
- Jessop A.M., Hobart M.A., Sclater J.G. The world heat flow collection 1975. Geothermal Series 5, Energy, Mines and Resources, Earth Physics Branch. Ottawa. Canada. 1976.
- Patriat P., Sauter D., Munschy M., Parson L. A survey of the Southwest Indian Ridge axis between Atlantis II Fracture zone and the Indian Ocean Triple Junction : Regional setting and large-scale segmentation. Mar. Geophys. Res. V. 19. 1997. Pp. 457-480.
- Pollack H.N., Hurter S.J., Johnston J.R. Global heat flow data set. World Data Center A for Solid Earth Geophysics. NOAA E/GCI. 325 Broadway. Boulder. CO 80303. USA. 1992.

References

- Glebovski V.Yu., Kaminski V.D., Osipov V.A. The structure of the anomalous magnetic field from the mid ridge to the Angola shelf. Litosfera Angol'skoj kotloviny i vostochnogo sklona Yuzhno-Atlanticheskogo khrebta. L. 1986. Pp. 70-80.
- 2. Gmurman V.E. Probability theory and mathematical statistics. Moscow. Vysshaya shkola. 2005. Pp. 327-349.
- 3. Naryshkin G.D., Pogrebiczki Y.E. [Morphostructure of the bottom of the South-East Atlantic. *Litosfera Angol'skoj kotloviny i vostochnogo sklona Yuzhno-Atlanticheskogo khrebta*. L. 1986. Pp. 10-23.
- 4. Podgornykh L.V., Khutorskoy M.D. Planetary heat flow (map of scale 1:30 000 000 and explanatory note to it). Moscow, Saint Petersburg. *Orgservis LTD*. 1997. 65 p.
- Podgornykh L.V., Khutorskoy M.D. The asymmetry of heat flow distribution along the Angola-Brazilian geotraverse (Southern Atlantic). *Report of RAS*. V. 355. No. 4. 1998. Pp. 212-215.
- 6. Podgornykh L.V., Khutorskoy M.D. Geothermal asymmetry of mid-ridges of the World ocean. Geotektonika. 1999. No.3. Pp. 21-42.
- 7. Pushharovski Yu.M., Pejve A.A., Razniczin Yu.N., Bazilevskaya E.S. Fracture zones in the Central Atlantic. Moscow. *GEOS*. 1995. 163 p.
- 8. Khutorskoy M.D., Teveleva E.A. Heat flow in the abyssal basins of Pacific and Atlantic. *Monitoring. Nauka i texnologii*. No. 4. 2016. Pp. 20-27.
- Khutorskoy M.D., Polyak B.G. Heat flow in transform faults of the North Atlantic and Southeast Pacific]. *Geotektonika*. No. 2. 2017. Pp. 55-66.
- 10. Khutorskoy M.D., Teveleva E.A., Podgornykh L.V. Geothermal asymmetry of the transform faults of the Equatorial Atlantic ocean. *Report of RAS.* V. 475. No. 3. 2017. Pp. 325-328.
- 11. Shrejder A.A. Geomagnetic investigations of the Indian ocean. Moscow. Nayka. 2001. 320 p.
- 12. Anderson R.N., Langseth M.G., Sclater J.G. The mechanisms of heat transfer through the floor on the Indian Ocean. J. Geophys. Res. V. 82. 1977. Pp. 3391-3409.
- Anderson R.N., Langseth M.G., Hobart M.A. Geothermal convection through oceanic crust and sediments in the Indian Ocean. Science. 204. 828832. 1979.
- Budanov V.G., Ermakov B.V., Podgornykh L.V. Geophysical asymmetry of the wings of mid-Atlantic ridge (MAR): gravity, magnetic fields, heat flow. European Geophysical Society, Annales Geophysical, part I, Society Symposia, Solid Earth Geophysics & Natural Hazards, Supplement I to Volume 15, SE27 Tectonic evolution and thermal structure at mid-ocean ridges. 1997. P. 161.
- 15. Cannat M., Rommevaux-Jestin C., Sauter D., Deplus C., Mendel. V. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J. Geophys. Res. V. 104. 1999. Pp. 22825-22843.
- Courtney R.C., Recq M. Anomalous heat flow near the Crozet Plateau and mantle convection. *Earth Planet. Sci. Lett.* V. 79. 1986. Pp. 373-384.
- 17. Hasterok D. Thermal Regime of the Continental and Oceanic Lithosphere. Ph.D. Dissertation. University of Utah. 2010. 156 p.
- Hosford A. Crustal accretion and Evolution at slow and ultra-slow spreading mid-ocean ridges. Doct. Dissertation. Mass. Inst. Technology, Cambridge, Mass., 02139 & Woods hole ocean. Inst., Woods hole, Mass. 02543. 2001. 254 p.

- Hyndman R.D., Langseth M.G., Von Herzen R.P. Deep Sea Drilling project geothermal measurements: a review. Rev. Geophys. 2.5. 1987. Pp. 1563-1582.
- 20. Jessop A.M., Hobart M.A., Sclater J.G. The world heat flow collection 1975. Geothermal Series 5, Energy, Mines and Resources, Earth Physics Branch. Ottawa. Canada. 1976.
- Patriat P., Sauter D., Munschy M., Parson L. A survey of the Southwest Indian Ridge axis between Atlantis II Fracture zone and the Indian Ocean Triple Junction : Regional setting and large-scale segmentation. *Mar. Geophys. Res.* V. 19, 1997. Pp. 457-480.
- 22. Pollack H.N., Hurter S.J., Johnston J.R. Global heat flow data set. World Data Center A for Solid Earth Geophysics. NOAA E/GCI. 325 Broadway. Boulder. CO 80303. USA. 1992.

Сведения об авторах Принадлежность к организации

Хуторской Михаил Давыдович

доктор геолого-минералогических наук, профессор, Заслуженный деятель науки РФ, заведующий лабораторией тепломассопереноса ГИН РАН, член редколлегии журнала «Мониторинг. Наука и технологии», 119017, Москва, Россия

Тевелева Елена Александровна

кандидат физико-математических наук, научный сотрудник лаборатории тепломассопереноса ГИН РАН, 119017, Москва, Россия

Information about authors Affiliations

Khutorskoy Mikhail Davydovich

Doctor of Geological and Mineralogical Sciences, Honored Worker of Science of the Russian Federation, Head of the Laboratory of Heat and Mass Transfer of the GIN RAS, Member of the Editorial Board of the Journal «Monitoring. Science and Technology», 119017, Moscow, Russia

Teveleva Elena Aleksandrovna

Candidate of Physico-Mathematical Sciences, Scientific Employee of the Laboratory of Heat and Mass Transfer of the GIN RAS, 119017, Moscow, Russia

