УДК 550.361.2

© Титова Е.Ф., Ахмедзянов В.Р.

РАДИОГЕННАЯ ТЕПЛОГЕНЕРАЦИЯ В ЗАПАДНО-АРКТИЧЕСКОМ РЕГИОНЕ

Титова Е.Ф., Ахмедзянов В.Р.

Федеральное государственное бюджетное учреждение науки Геологический институт РАН, Москва, Россия

e-mail: geoissues@gmail.com

На основе материалов, полученных в экспедициях на НИС «Академик Николай Страхов» (2006–2011 гг.), была определена поверхностная радиогенная теплогенерация в донных осадках для некоторых районов Баренцева моря и Норвежско-Гренландского бассейна. Получены следующие средние значения радиогенной теплогенерации – 0.93 мкВт/м³ в районе свода Федынского; 1.11 мкВт/м³ – в северной части хребта Книповича и в районе Земли Франца-Иосифа; 1.37 мкВт/м³ – в районе трога Орла (Стурой). Указанные значения характерны для осадочного материала, представленного здесь преимущественно морскими пелитовыми илами. Полученные данные являются основой для расчета радиогенной компоненты теплового потока в земной коре и для моделирования глубинных температур в исследуемых районах.

Ключевые слова: радиогенная теплогенерация, концентрации теплогенерирующих элементов, радиогенная теплогенерация в осадочных отложениях.

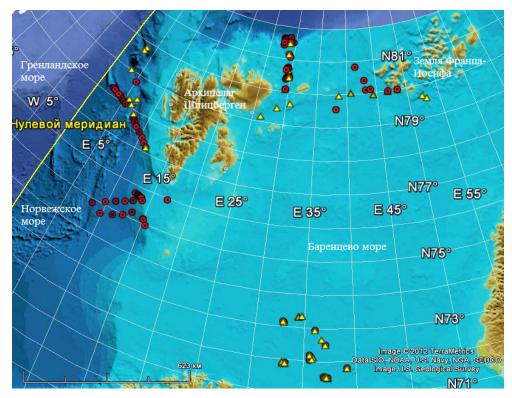
Surface radiogenic heat production was determined in the bottom sediments in several areas in the Barents Sea and Norwegian-Greenland basin based on the data received from RV "Akademik Nikolay Strakhov" cruises performed in 2006-2011. The following mean values of the radiogenic heat production were obtained $-0.93~\mu W$ m⁻³ near Fedynsky High; 1.11 μW m⁻³ – in the northern part of Knipovich Ridge and the same mean value near Franz Josef Land; the highest mean values of heat production were obtained in the Storøya Trough $-1.37~\mu W$ m⁻³. The received values are common for sediments mostly presented here by pelitic silt. The obtained data is the base for further radiogenic heat flow modeling for the studied areas.

Keywords: radiogenic heat production, heat producing elements concentrations, radiogenic heat production in the sediments.

Введение

Исследование природы глубинного теплового потока, его изменения во времени, а также формы и глубины термических источников — это важнейшие задачи теоретической геотермии. Не менее важны практические аспекты геотермии, связанные с использованием ресурсов глубинного тепла для энергетики и теплоснабжения. В любой постановке проблема точного прогноза глубинных температур и фазового состояния вещества земной коры требует знания всех доступных поверхностных параметров, в том числе радиогенной теплогенерации в породах верхних слоев геологического разреза [1].

Как известно, часть теплового потока, излучаемого из недр Земли, генерируется в земной коре за счет спонтанного радиоактивного распада долгоживущих изотопов. Величина этой тепловой энергии может быть определена эмпирически, исходя из концентраций


радиоактивных изотопов, энергии, выделяющейся при распаде, и плотности содержащей их горной породы. По своему энергетическому потенциалу наиболее значимым для генерации тепла является спонтанный распад долгоживущих изотопов ^{238}U , ^{232}Th , ^{40}K .

Мы количественно проанализировали радиогенную теплогенерацию в Западно-Арктическом регионе на некоторых структурах Баренцева моря и Норвежско-Гренландского бассейна, где проводились полигонные исследования в 24-28 рейсах НИС «Академик Николай Страхов» (2006-2011 гг.).

Определение радиогенной теплогенерации

Аналитическое определение концентраций U, Th, K проводилось в донных отложениях, поднятых грунтовыми трубами в районе трога Орла и трога Франц-Виктория в северной части Баренцева моря, между архипелагами

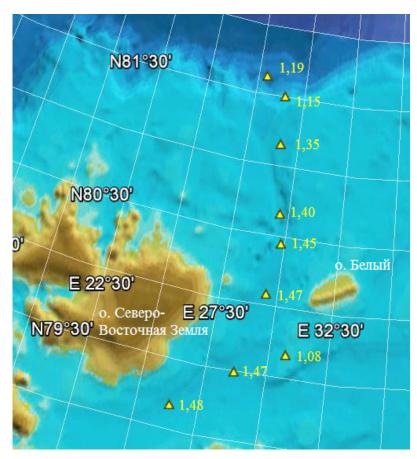
 $N_2 \ 3(12) \ 2012$ 35

Рис. 1. Районы геотермических работ экспедиций НИС «Академик Николай Страхов» в 2006-2011 гг. Желтые треугольники – станции отбора донных грунтов, красные отметки – измерения температур в донном грунте

Шпицберген и Земля Франца-Иосифа (ЗФИ), в районе свода Федынского в южной части Баренцева моря, в северной части хребта Книповича и в разломной зоне Моллой Атлантического океана (рис. 1). Одновременно в тех же точках проводились измерения температур в донных грунтах термозондом «ГЕОС-М» и измерения коэффициентов теплопроводности осадков.

Из поднятого грунтовой трубой керна были выделены образцы, представленные преимущественно илами и глинистым материалом, высушены в лаборатории, затем из них были изготовлены порошковые пробы (навеска 10 г), прессованные под давлением в виде дисков. Анализ порошковых проб был выполнен рентгеноспектральным флуоресцентным методом на рентгеновском вакуумном спектрометре в лаборатории химико-аналитических исследований ГИН РАН.

Из полученных в результате анализа валовых концентраций U, Th, K были вычислены концентрации основных теплогенерирующих изотопов ^{238}U , ^{232}Th и ^{40}K , исходя из предположения, что изотопы распространены в природе следующим образом: $^{238}U - 99.27$ % от общего U, $^{232}Th - 100$ %, $^{40}K - 0.0117$ % от


общего K[2].

На основе вычисленных концентраций ^{238}U , ^{232}Th , ^{40}K (гистограммы распределений концентраций ^{238}U , ^{232}Th и ^{40}K , минимальные и максимальные значения, средние значения и стандартные отклонения приводятся в прил. 1) и плотности содержащей породы, была рассчитана поверхностная радиогенная теплогенерация ($A_{\text{пов}}$) (гистограммы распределений поверхностной радиогенной теплогенерации показаны в прил.2) для каждого исследуемого района:

$$A_{\text{HOB}} (MKBT/M^3) = \rho (aU + bTh + cK),$$

где ρ — плотность породы, кг/м³ (для океанических глин определена плотность 1800 кг/м³ [3]); a, b, c — теплогенерация изотопа на единицу массы ($a = 9.17 \cdot 10^{-5}$; $b = 2.56 \cdot 10^{-5}$; $c = 2.97 \cdot 10^{-5}$, $BT/K\Gamma$) [2].

Таким образом, для исследуемых районов были получены следующие средние значения теплогенерации — 0.93 мкВт/м³ в районе свода Федынского; северная часть хребта Книповича и район Земли Франца-Иосифа характеризуются средними значениями радиогенной теплогенерации — 1.11 мкВт/м³, самым высоким средним значением тепло-

Рис. 2. Станции отбора образцов донных грунтов (желтые отметки) и значения радиогенной теплогенерации $(мкBт/м^3)$ в районе трога Орла

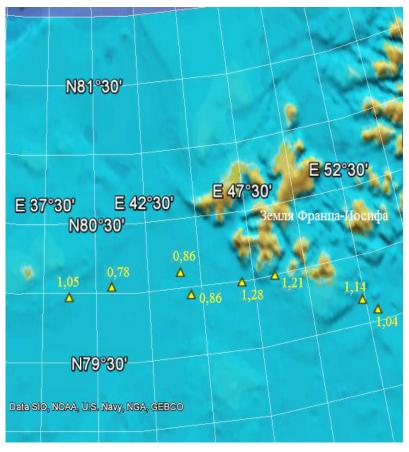


Рис. 3. Станции отбора образцов донных грунтов и значения радиогенной теплогенерации (мкВт/м³) в районе ЗФИ

 $N_{2} 3(12) 2012$ 37

генерации представлен район трога Орла – 1.37 мкBт/м^3 .

Ниже приводятся подробные описания полученных данных по каждому району в отдельности.

Радиогенная теплогенерация в исследуемых районах Западно-Арктического региона

А) Район трога Орла

В районе трога Орла было выполнено 9 станций отбора образцов донных грунтов

 Таблица 1

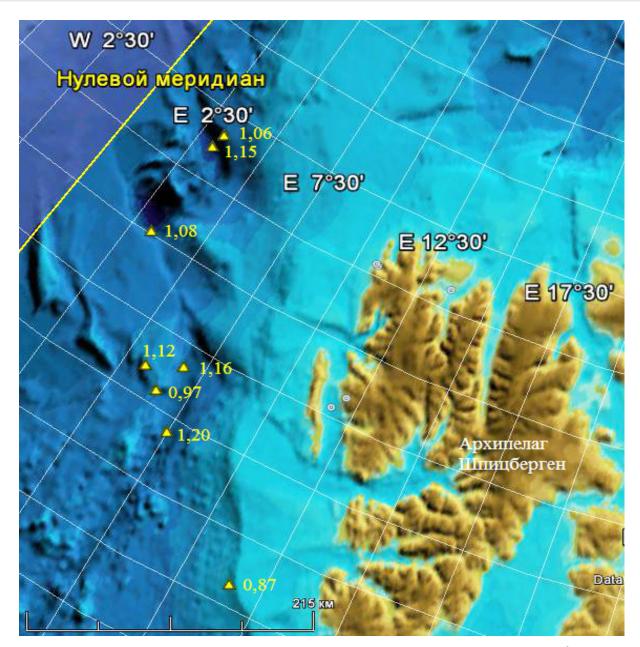
 Концентрации основных теплогенерирующих изотопов и радиогенная теплогенерация в районе трога Орла

№	²³⁸ U- 99.27%	²³² Th- 100%	⁴⁰ K- 0.0117%	Апов
	г/т	г/т	г/т	мкВт/м³
1	2.98	10	2.43	1.08
2	4.96	13	3.44	1.60
3	4.96	15	3.66	1.71
4	3.97	11	3.02	1.32
5	3.97	10	2.86	1.27
6	4.96	15	3.72	1.71
7	3.97	10	3.01	1.28
8	4.96	14	3.52	1.65
9	4.96	12	3.46	1.56
10	4.96	14	3.06	1.63
11	3.97	6	1.93	1.04
12	3.97	14	3.45	1.49
13	3.97	15	3.98	1.56
14	4.96	13	3.21	1.59
15	4.96	14	3.59	1.66
16	2.98	10	2.26	1.07
17	3.97	12	3.51	1.40
18	3.97	14	3.59	1.49
19	3.97	14	3.80	1.50
20	3.97	15	3.58	1.54
21	3.97	13	3.24	1.43
22	2.98	9	2.46	1.04
23	3.97	11	2.95	1.32
24	1.99	13	3.33	1.10
25	2.98	10	2.39	1.08
26	2.98	13	3.13	1.26
27	3.97	12	3.10	1.37
28	3.97	12	3.00	1.37
29	2.98	10	2.27	1.07
30	4.96	13	3.09	1.58
31	1.99	10	2.82	0.94
32	4.96	11	2.31	1.45
33	2.98	8	2.28	0.98
34	3.97	10	2.34	1.24
35	3.97	13	3.58	1.45

(рис. 2). В результате анализа было получено 35 определений концентраций U, Th, K(табл. 1). Район трога Орла характеризуется самым высоким средним значением радиогенной теплогенерации 1.37 мкВт/м³. Если предположить, что теплогенерация не изменяется с глубиной, то при мощности осадочного слоя 6 км, средняя величина радиогенного потока от осадочного чехла в троге Орла составит не более 10 мВт/м², при наблюдаемом аномально высоком тепловом потоке у поверхности дна 519 мВт/м2 (средний наблюдаемый тепловой поток для района равен 256 мВт/м²) [4]. Вклад радиогенного теплового потока в общий тепловой поток в данном случае минимальный.

Б) Район Земли Франца-Иосифа

В районе Земли Франца-Иосифа было выполнено 8 станций отбора образцов донных грунтов (рис. 3). В результате анализа получено 26 определений концентраций *U*, *Th*, *K* (табл. 2). Район Земли Франца-Иосифа представлен средним значением радиогенной теплогенерации 1.11 мкВт/м³. Учитывая мощность осадочного слоя в троге Франц-Виктория (около 4 км) [5], получим, что радиогенный тепловой поток составит не более 4.5 мВт/м² при измеренном фоновом тепловом потоке до 90 мВт/м² [4].


В) Район северной части хребта Книповича и разломная зона Моллой

В районе северной части хребта Книпо-

Таблица 2 Концентрации основных теплогенерирующих изотопов и радиогенная теплогенерация в районе ЗФИ

Nº	²³⁸ U- 99.27%	²³² Th- 100%	⁴⁰ K- 0.0117%	$\mathbf{A}_{_{\mathbf{\Pi}0\mathbf{B}}}$
	г/т	г/т	г/т	мкВт/м³
1	5.96	8	2.41	1.48
2	4.96	8	2.37	1.31
3	1.99	10	2.57	0.93
4	3.97	10	2.54	1.25
5	4.96	8	2.16	1.30
6	2.98	8	2.09	0.97
7	4.96	9	2.85	1.39
8	4.96	9	2.59	1.37
9	4.96	10	2.85	1.43
10	3.97	10	2.80	1.27
11	3.97	9	2.70	1.21
12	2.98	8	2.53	1.00
13	1.99	9	2.23	0.86
14	1.99	9	2.13	0.86
15	1.99	8	2.20	0.81
16	1.99	7	1.87	0.75
17	2.98	10	2.97	1.11
18	2.98	8	2.53	1.00
19	2.98	9	2.75	1.05
20	3.97	10	2.70	1.26
21	3.97	9	2.61	1.21
22	2.98	7	2.36	0.94
23	1.99	9	2.71	0.89
24	3.97	10	2.55	1.25
25	2.98	9	2.56	1.04
26	2.98	8	2.10	0.97

№ 3(12) 2012

Рис. 4. Станции отбора образцов донных грунтов и значения радиогенной теплогенерации (мкВт/м³) в северной части хребта Книповича и в разломной зоне Моллой

вича и разломной зоне Моллой было выполнено 8 станций отбора образцов донных грунтов (рис. 4). Было получено 52 определения концентраций U, Th, K (табл. 3). Район характеризуется средним значением радиогенной теплогенерации $1.11~{\rm MkBt/m^3}$, что свидетельствует о незначительной роли радиогенного теплового потока в общей геотермической структуре этой части Атлантического океана.

Г) Район свода Федынского

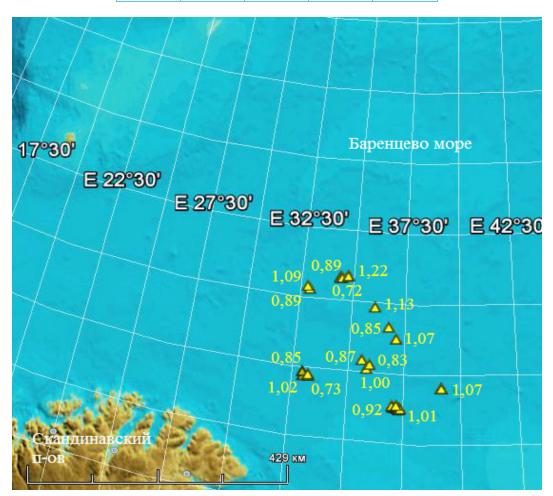
В районе свода Федынского было выполнено 32 станции отбора образцов донных грунтов (рис. 5). Получено 71 определение концентраций U, Th, K (табл. 4). Район свода Федынского характеризуется самым низким

значением радиогенной теплогенерации -0.93 мкBт/m^3 .

Заключение

Итак, рассматриваемые районы в Западно-Арктическом регионе характеризуются средними значениями радиогенной теплогенерации — 0.93 мкВт/м³ в южной части Баренцева моря в районе свода Федынского, 1.11 мкВт/м³ в районе хребта Книповича и в районе Земли Франца-Иосифа и 1.37 мкВт/м³ в районе трога Орла. Такие значения теплогенерации в общем случае характерны для осадочных глинистых пород. В работе [6] приводится компиляция 2188 концентраций

 Таблица 3


 Концентрации основных теплогенерирующих изотопов и радиогенная теплогенерация в северной части хребта Книповича и в разломной зоне Моллой

Nº	²³⁸ U- 99.27%	²³² Th- 100%	⁴⁰ K- 0.0117%	$\mathbf{A}_{_{\mathrm{II}\mathrm{OB}}}$
	г/т	г/т	г/т	мкВт/м³
1	2.98	11	2.84	1.15
2	1.99	12	2.41	1.01
3	1.99	10	2.64	0.93
4	3.97	11	2.95	1.32
5	2.98	12	3.12	1.21
6	2.98	13	3.34	1.27
7	2.98	10	2.42	1.08
8	2.98	10	2.58	1.09
9	2.98	11	2.85	1.15
10	2.98	10	2.38	1.08
11	2.98	9	2.22	1.03
12	2.98	9	2.54	1.04
13	1.99	10	2.49	0.92
14	2.98	10	2.43	1.08
15	2.98	11	2.73	1.14
16	1.99	11	2.85	0.99
17	2.98	9	2.62	1.05
18	3.97	11	3.21	1.33
19	2.98	11	3.27	1.17
20	1.99	11	2.81	0.98
21	2.98	9	2.53	1.04
22	3.97	10	2.69	1.26
23	3.97	13	3.05	1.42
24	2.98	11	3.09	1.16
25	1.99	11	3.12	1.00
26	3.97	10	2.74	1.26
27	2.98	10	3.13	1.12
28	2.98	10	2.75	1.10
29	2.98	9	2.78	1.05
30	5.96	12	3.30	1.71
31	1.99	12	3.58	1.07
32	2.98	8	2.27	0.98
33	2.98	9	2.42	1.04
34	2.98	9	2.41	1.04
35	2.98	10	2.85	1.10
36	2.98	8	2.12	0.97
37	1.99	7	2.18	0.77
38	2.98	9	2.66	1.05
39	1.99	12	3.41	1.06
40	1.99	9	2.84	0.89
41	1.99	9	2.30	0.87

 $N_{2} \ 3(12) \ 2012$

Таблица 3 (продолжение)

42	2.98	10	2.56	1.09
43	2.98	9	2.56	1.04
44	3.97	12	3.27	1.38
45	1.99	11	3.30	1.01
46	2.98	12	3.34	1.22
47	2.98	10	3.24	1.13
48	2.98	12	3.61	1.24
49	2.98	11	2.87	1.15
50	2.98	10	2.91	1.11
51	3.97	12	3.28	1.38
52	1.99	9	2.31	0.87

Рис. 5. Станции отбора образцов донных грунтов и значения радиогенной теплогенерации (мкВт/м³) в районе свода Федынского

U, *Th* и *K*, выполненная на основе 102 опубликованных ранее исследований. Основываясь на этой компиляции, была определена средняя радиогенная теплогенерация для рассмотренных в исследованиях типов горных пород. Для общей группы осадочных пород авторы приводят среднее значение теплогенерации – 1.10 мкВт/м³. В частности, для глинистых пород приводится среднее зна-

чение — $1.39~\text{мкBт/м}^3$. В работе приводятся также средние значения радиогенной теплогенерации для группы магматических пород — $1.76~\text{мкBт/m}^3$ и для группы метаморфических пород — $1.63~\text{мкBт/m}^3$.

В работе [7] приводят среднее значение радиогенной теплогенерации $-1.0~{\rm MkBt/m^3}$ для глинистых пород, поднятых из скважины *Cape Roberts* (CRP-3) глубиной 939.42 м в

 Таблица 4

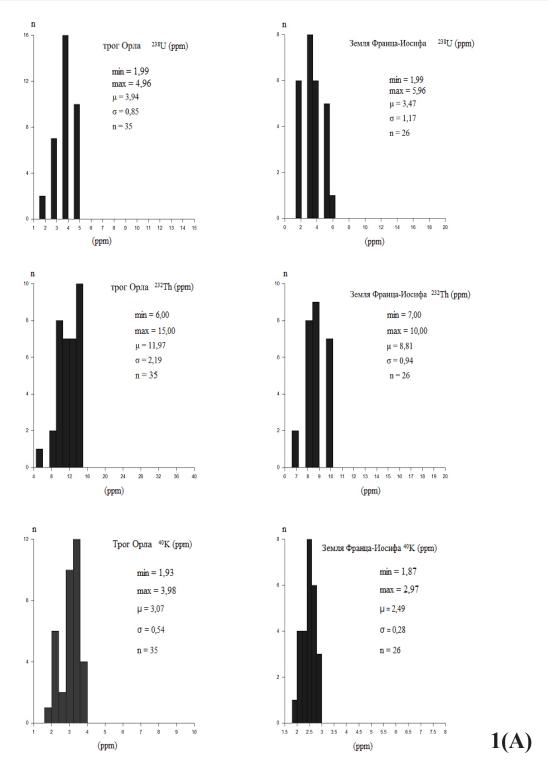
 Концентрации основных теплогенерирующих изотопов и радиогенная теплогенерация в районе свода Федынского

Nº	²³⁸ U- 99.27%	²³² Th- 100%	⁴⁰ K- 0.0117%	$\mathbf{A}_{ ext{nob}}$
	г/т	г/т	г/т	мкВт/м³
1	0.99	8	2.72	0.68
2	0.99	10	2.74	0.77
3	1.99	10	2.80	0.94
4	1.99	9	2.75	0.89
5	2.98	9	2.76	1.05
6	0.99	9	2.76	0.73
7	2.98	11	2.48	1.13
8	1.99	9	2.46	0.87
9	3.97	10	2.75	1.26
10	2.98	7	2.48	0.95
11	1.99	8	2.57	0.83
12	0.99	7	2.36	0.61
13	1.99	8	2.33	0.82
14	2.98	8	2.56	1.00
15	0.99	8	2.56	0.67
16	3.97	9	2.77	1.22
17	0.99	10	2.81	0.78
18	0.99	8	2.45	0.66
19	2.98	9	2.72	1.05
20	2.98	9	2.73	1.05
21	0.99	8	2.44	0.66
22	2.98	7	2.72	0.96
23	1.99	7	2.56	0.79
24	2.98	7	2.96	0.97
25	0.99	11	2.35	0.80
26	0.99	9	2.64	0.72
27	2.98	8	2.35	0.99
28	1.99	8	2.34	0.82
29	0.99	8	2.37	0.66
30	1.99	8	2.20	0.81
31	1.99	8	2.47	0.83
32	1.99	10	2.40	0.92
33	3.97	10	2.84	1.27
34	1.99	12	3.04	1.04
35	1.99	10	2.58	0.93
36	1.99	10	2.35	0.91
37	1.99	12	2.39	1.01
38	1.99	11	2.37	0.96
39	1.99	10	2.37	0.92
40	2.98	9	2.82	1.06
41	2.98	9	2.87	1.06

 $N_{2} \ 3(12) \ 2012$

Таблица 4 (продолжение)

42	2.98	11	2.89	1.15
43	1.99	11	3.01	1.00
44	2.98	13	2.97	1.25
45	1.99	10	2.42	0.92
46	1.99	9	2.44	0.87
47	1.99	8	2.43	0.83
48	1.99	9	2.39	0.87
49	4.96	9	2.59	1.37
50	1.99	5	2.62	0.70
51	1.99	10	2.56	0.93
52	1.99	9	2.52	0.88
53	1.99	9	2.52	0.88
54	1.99	8	2.33	0.82
55	2.98	7	2.46	0.95
56	4.96	9	2.75	1.38
57	1.99	9	2.50	0.88
58	1.99	8	2.45	0.83
59	1.99	9	2.46	0.87
60	4.96	10	2.71	1.42
61	2.98	7	2.59	0.95
62	1.99	8	2.66	0.84
63	2.98	10	2.46	1.08
64	1.99	10	2.43	0.92
65	1.99	8	2.49	0.83
66	1.99	9	2.46	0.87
67	3.97	9	2.71	1.21
68	1.99	10	2.43	0.92
69	1.99	10	2.61	0.93
70	1.99	8	2.42	0.83
71	1.99	9	2.59	0.88

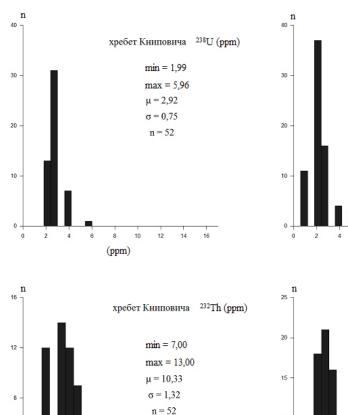

море Росса (бассейн Земли Виктории, Антарктида), пробуренной на глубине моря 297 м.

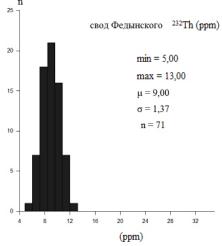
В исследовании [8] подробно рассматривается радиогенная теплогенерация в норвежских коренных горных породах. Отмечается, что радиогенная теплогенерация может варьироваться больше внутри определенной группы горных пород, нежели между различными группами. Очевидно, велико значение локальных факторов, определяющих величину радиогенной теплогенерации. В [8] вариации радиогенной теплогенерации в магматических породах связываются с особенностями формирования и эволюции их материнских магм, вариации теплогенерации в осадочных породах, судя по всему, отображают особенности осадочных процессов. Возраст и сте-

пень метаморфизма автор не относит к существенным факторам, влияющим на величину радиогенной теплогенерации. Другое дело – тектоническая обстановка: породы, образовавшиеся внутри плит, показывают большую теплогенерацию по сравнению с породами, сформированными вдоль окраин плит.

Таким образом, вариации теплогенерации в осадочных отложениях в рассматриваемых районах Западно-Арктического региона могут быть связаны с особенностями происхождения и перемещения осадочного материала.

На основе вновь полученных данных по радиогенной теплогенерации для каждого исследуемого района планируется подобрать наиболее адекватные модели распределения


теплогенерирующих элементов по глубине. Необходимо будет учесть тектоническую историю и возраст района, типы встречающихся пород, особенности строения земной коры и особенности распределения глубинного теплового потока. Эти модели представят основу для вычисления регионального радиогенного теплового потока в земной коре и последующего определения доли радиоактивного тепла в общем наблюдаемом тепловом потоке, что необходимо для изучения


термической истории и термической структуры геологических объектов.

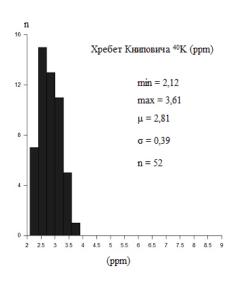
Приложение 1

Гистограммы распределений концентраций ^{238}U , ^{232}Th и ^{40}K , минимальные (min) и максимальные (max) значения, средние значения (μ) и стандартные отклонения (σ) и количество анализируемых проб (n) для некоторых районов Западно-Арктического региона: 1(A) для трога Орла и Земли Франца-Иосифа; 1(Б)

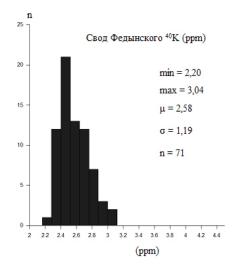
Ne 3(12) 2012

свод Федынского ²³⁸U (ppm)

min = 0,99


max = 4,96

 $\mu = 2,29$


 $\sigma = 0.94$

n = 71

(ppm)

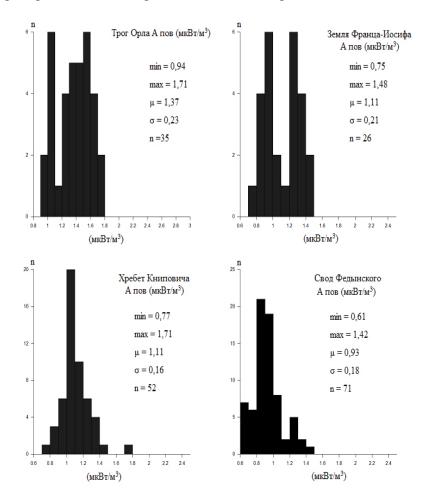
(ppm)

мых проб (n) для районов трога Орла и Земли Франца-Иосифа.

для районов хребта Книповича и свода Федынского.

12 14

Приложение I (A). Гистограммы распределений концентраций ^{238}U , ^{232}Th и ^{40}K , минимальные (min) и максимальные (max) значения, средние значения (μ) и стандартные отклонения (σ) и количество анализируе-


Приложение I (E). Гистограммы распределений концентраций ^{238}U , ^{232}Th и ^{40}K , минимальные (min) и максимальные (max) значения, средние значения (μ), стандартные отклонения (σ) и количество анализируемых

1(Б)

проб (n) для районов хребта Книповича и свода Федынского.

Приложение 2 Гистограммы распределений поверхностной

радиогенной теплогенерации, минимальные (min) и максимальные (max) значения, средние значения (μ) , стандартные отклонения (σ) и количество определений (n) для исследуемых районов.

Список литературы

- 1. Тепловой режим недр СССР. Монограф. гл. ред. А.В. Пейве. Изд-во «Наука», М. 1970, 219 с.
- 2. Jaupart C. and Mareschal J.-C., 2004. "Constraints on Crustal Heat Production from Heat Flow Data" // Treatise on Geochemistry, Vol. 3: The Crust, edited by R.L. Rudnick, Elsevier Science Publishers, Amsterdam, pp. 65-84.
- 3. Берч Фр., Шерер Дж., Спайсер Г. Справочник для геологов по физическим константам. Пер. с англ. С. В. Ренц, под ред. чл.-корр. АН СССР А. П. Виноградова. М.: Изд-во ИЛ, 1949, 302 с.
- 4. Хуторской М.Д., Леонов Ю.Г., Ермаков А.В., Ахмедзянов В.Р. Аномальный тепловой поток и природа желобов в северной части Свальбардской плиты // Доклады Академии наук, 2009, том 424, № 2, с. 227-233.
- 5. Верба В.В., Астафурова Е.Г., Леонов В.О., Мандриков В.С., Хлюпин Н.И. Строение северной континентальной окраины Баренцевского шельфа в районе архипелага Земля Франца-Иосифа // В сб.: Геолого-геофизические характеристики литосферы Арктического региона. СПб, ВНИИОкеанология, 2004, Вып. 5, т. 203, с. 169-175.
- 6. Vila M., Fernandez M., Jimenez-Munt I. "Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling" // Tectonophysics, Vol. 490 (2010), Issues 3-4, pp. 152-164.
- 7. Bücker C. J., Jarrard R. D. and Wonik T. "Downhole Temperature, Radiogenic Heat Production, and Heat Flow from the CRP-3 Drillhole, Victoria Land Basin, Antarctica" // Terra Antartica, 2001, 8 (3), pp. 151-159.
- 8. Slagstad T. "Radiogenic heat production of Archaean to Permian geological provinces in Norway" // Norwegian Journal of Geology, Vol. 88, pp. 149-166. Trondheim, 2008.
- 9. Проблемы геотермии и практического использования тепла Земли. Т.1. Труды первого всесоюзного совещания по геотермическим исследованиям. Изд-во АН СССР, М. 1959, 254 с.
- 10. Фундаментальные проблемы океанологии: физика, геология, биология, экология // Научный отчет 24 рейса НИС «Академик Николай Страхов» в Норвежско-Гренландском бассейне в рамках программы № 17 Президиума РАН, ГИН РАН, М., 2007.